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Abstract
A rapid increase in the number of patients with Alzheimer’s disease (AD) is expected over the next decades. Accordingly, 
there is a critical need for early-stage AD detection methods that can enable effective treatment strategies. In this study, 
we consider the ability of episodic-memory measures to predict mild cognitive impairment (MCI) to AD conversion and 
thus, detect early-stage AD. For our analysis, we studied 307 participants with MCI across four years using data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Using a binary logistic regression, we compared episodic-memory 
tests to each other and to prominent neuroimaging methods in MCI converter (MCI participants who developed AD) and 
MCI non-converter groups (MCI participants who did not develop AD). We also combined variables to test the accuracy 
of mixed-predictor models. Our results indicated that the best predictors of MCI to AD conversion were the following: a 
combined episodic-memory and neuroimaging model in year one (59.8%), the Rey Auditory Verbal Learning Test in year 
two (71.7%), a mixed episodic-memory predictor model in year three (77.7%) and the Logical Memory Test in year four 
(77.2%) of ADNI. Overall, we found that individual episodic-memory measure and mixed models performed similarly when 
predicting MCI to AD conversion. Comparatively, individual neuroimaging measures predicted MCI conversion worse than 
chance. Accordingly, our results indicate that episodic-memory tests could be instrumental in detecting early-stage AD and 
enabling effective treatment.

Keywords Alzheimer’s disease (AD) · Episodic memory · Mild cognitive impairment (MCI) · Alzheimer’s disease 
neuroimaging initiative (ADNI) · Disease prediction · Big data

Introduction

Alzheimer’s disease (AD) is the second leading cause of 
death in Australia and is, consequentially, one of the greatest 
medical threats of our time (Australian Bureau of Statistics 
2017). AD is a progressive degenerative disorder that can 
lead to severe dementia. There is a critical need for treat-
ments that can counteract AD; however, most treatments 

are ineffective due to the late stage of AD diagnoses, the 
complex multifaceted nature of the disorder, and a fixation 
on singular theories of AD progression (e.g., the amyloid 
cascade hypothesis) (Banik et al. 2015; Rasmussen and 
Langerman 2019). Accordingly, the creation of new early-
stage diagnostic methods could help enable effective treat-
ments for AD. The Alzheimer’s Association estimates that 
the formulation of early-stage diagnostic methods could 
revolutionise AD treatment saving the US alone $7.9 tril-
lion (Alzheimer’s Association 2018). Moreover, early-stage 
diagnoses and treatment are predicted to be instrumental in 
improving the quality of life of those living with AD (Chu 
2012). Therefore, it is crucial to develop new diagnostic 
methods that can detect early-stage AD and, thus, combat 
the disease.

In research, neuroimaging, biomarker, and cognitive 
measures are commonly used to detect early-stage AD. 
Specifically, these measures are used to predict mild cogni-
tive impairment (MCI) to AD conversion and, thus, discover 
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markers of early-stage AD (Gainotti et al. 2014; Ottoy et al. 
2019). There is evidence to suggest that neuroimaging and 
cognitive measures can detect MCI to AD conversion; how-
ever, these markers also have significant limitations. For 
example, neuroimaging and biomarker methods are often 
invasive or unaffordable to patients and, therefore, lack 
widespread clinical use (Jack et al. 2011). Moreover, cogni-
tive tests (specifically, general multi-domain tests), which 
are commonly used to diagnose mid-stage AD, cannot accu-
rately diagnose early-stage AD and are prone to misdiagnos-
ing forms of dementia (e.g., diagnosing vascular dementia 
as AD) (Bak et al. 2005; Arevalo-Rodriguez et al. 2015; 
Larner 2019). In the literature, it is common for studies to 
combine neuroimaging, biomarker, demographic, and cogni-
tive measures to predict MCI to AD conversion; however, 
although these combined models boast a high accuracy, they 
rarely overcome the limitations of each method discussed 
above. Accordingly, each category of AD research requires 
significant innovation to effectively diagnose early-stage 
AD. In this study, we investigate how cognitive tests can be 
adapted to predict MCI to AD conversion, and thus detect 
early-stage AD.

Research has suggested that specific tests, that measure 
the initial cognitive symptoms of AD, could be used to diag-
nose the early stages of the disorder (Bastin and Salmon 
2014; Brown 2015). For example, the Rey Auditory Verbal 
Learning Test (RAVLT; a specific episodic-memory test) is 
theorised to detect early-stage AD because episodic-memory 
decline is one of the first symptoms of the disease (Ecker-
ström et al. 2013; El Haj et al. 2016). In theory, specific tests 
are uniquely equipped to detect early-stage AD as they can 
assess a singular cognitive domain in detail. The detail of 
specific tests is distinctly opposite to current general multi-
domain tests which rely on broad assessments and late-stage 
symptoms of AD. Episodic memory tests are also thought to 
perform better than other types of specific tests (e.g., visual 
memory) because episodic-memory decline is one of the 
earliest cognitive symptoms of AD (Eckerström et al. 2013; 
El Haj et al. 2016). Consequently, specific episodic-memory 
tests may be able to overcome the limitations of general 
multi-domain tests. Furthermore, specific episodic-memory 
tests (e.g., RAVLT) may also be able to overcome some of 
the limitations of neuroimaging and biomarker measures as 
they are easier to administer. Accordingly, this study inves-
tigates the ability of episodic-memory tests to predict MCI 
to AD conversion.

Various studies have found that episodic-memory measures 
can predict MCI to AD conversion as a part of a mixed-predic-
tor model. For example, episodic-memory measures have been 
found as strong predictors of MCI to AD conversion when 
combined with cortical thickness, hippocampal atrophy, neu-
ron connectivity, and amyloid-beta measures (Gomar et al. 
2011; Cai et al. 2015; Nathan et al. 2016; Moradi et al. 2017; 

Russo et al. 2017; Ihara et al. 2018). However, because of 
the prominence of mixed-predictor models, episodic-memory 
measures are often studied with little focus. Accordingly, the 
accuracy and ability of individual episodic-memory tests are 
not fully understood when predicting MCI to AD conver-
sion. Some preliminary research has suggested that episodic-
memory measures could individually predict MCI to AD 
conversion with a high accuracy (Chapman et al. 2011; Irish 
et al. 2011; Derby et al. 2013; Gomar et al. 2014; De Simone 
et al. 2019). However, in the current literature, studies often 
neglect to research multiple episodic-memory tests and com-
pare episodic-memory measures to other prominent markers 
of early-stage AD (e.g., general multi-domain tests and neu-
roimaging markers). Accordingly, it is unclear how accurate 
individual episodic-memory measures are, how they compare 
to prominent predictors of early-stage AD, and if they perform 
better than mixed predictive models. Consequently, there is a 
critical need for researchers to further evaluate and understand 
episodic-memory predictors of early-stage AD.

In this study, we investigate the ability of episodic-mem-
ory measures to predict early-stage AD. To our knowledge, 
no study has sought to evaluate and compare the predic-
tive ability of multiple episodic-memory measures in-depth 
(e.g., the comparison of multiple episodic-memory tests, 
multivariate models, and neuroimaging variables in a big 
dataset). Moreover, there is a lacking understanding of how 
episodic-memory tests compare to one another and other 
predictors of early-stage AD (e.g., MRI). Subsequently, in 
this study, we evaluate the accuracy of multiple episodic-
memory tests when predicting MCI to AD conversion. 
We also evaluate episodic-memory tests both individually 
and in mixed models to understand the optimal method for 
early-stage AD detection. Finally, we seek to understand the 
viability of episodic-memory measures by comparing them 
to other prominent neuroimaging markers of early-stage AD 
(volumetric MRI). Accordingly, in this study, we aim to do 
the following:

(1) Determine the accuracy of each episodic-memory test 
when predicting MCI to AD conversion.

(2) Create and assess mixed-predictor models of MCI to 
AD conversion.

(3) Investigate whether neuroimaging predictors can out-
perform or improve prior episodic-memory and mixed 
predictive models.

Methods

Data source and acquisition

The data for this project was acquired from the Alzheimer’s 
disease neuroimaging initiative (ADNI) database. ADNI is a 
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research organisation (led by Principal Investigator Michael 
W. Weiner, MD) that investigates neuroimaging, biomarker, 
and neuropsychological markers of AD and MCI. We chose 
to use ADNI for this study as the initiative has an exten-
sive longitudinal database that includes numerous episodic-
memory and neuroimaging variables. Moreover, ADNI is 
consistently used throughout the literature to study MCI to 
AD conversion. The only prerequisite for obtaining ADNI 
data was a data access application and institutional ethics 
approval. Our study gained ethics approval from Western 
Sydney Universities Human Research Ethics Committee in 
March 2019.

Participants

ADNI recruits all their participants through traditional 
media (e.g., newspapers), new media (e.g., social media), 
third-party health providers, and their own website. All data 
collection is performed at ADNI sites or partnering organisa-
tions in North America. At these sites, ADNI collects neuro-
imaging, biomarker, neuropsychological, and demographic 
data using trained clinicians. These professionals also con-
duct and confirm participant diagnoses. The diagnoses for 
MCI and AD are performed using measures of subjective 
memory concern, the Logical Memory test (LMT; only the 
delayed recall task), Mini-mental state exam (MMSE), Clini-
cal dementia rating scale (CDR), and the National Institute 
of Neurological and Communicative Disorders and Stroke 
and the Alzheimer’s Disease and Related Disorders Asso-
ciation Alzheimer’s Criteria (NINCDS-ADRDA). For more 
information on ADNI’s diagnostic methods and criteria see 
the ADNI2 Procedures Manual (Alzheimer’s Disease Neu-
roimaging Initiative 2008, p. 27).

For this project, we studied 307 participants with MCI 
from the ADNI2 cohort. We specifically chose to research 
the ADNI2 cohort as, out of all four ADNI cohorts, ADNI2 
is the most recently completed study. However, we only 
included new MCI participants from the ADNI2 cohort as 
old participants carrying over from previous initiatives had 
different baselines and measures that could not be easily 
compared. Our MCI participants formed two groups dic-
tated by their diagnosis over the first four years of ADNI2. 
Specifically, participants were sorted into a converter group 
if they converted from MCI to AD and into a non-converter 
group if they remained stable over the first four years of 
ADNI2. These groups were made to accurately address 
whether disease markers could predict MCI to AD conver-
sion. The resulting population contained 95 converters and 
212 non-converters at baseline.

Across the years of ADNI2, there was a gradual increase 
in participant drop out with year one containing 301 par-
ticipants, year two containing 261 participants, year three 
containing 214 participants, year four containing 151 

participants, and year five containing 27 participants. In our 
sample, some participants also sporadically missed testing 
dates across the four years of ADNI2 (e.g., some partici-
pants measured at baseline missed the year one follow-up 
but attended the year two assessment). Accordingly, while 
there was a total of 307 participants studied across the four 
years of ADNI2, no individual year measured 307 partici-
pants (besides baseline). It is also important to note that 
we excluded the fifth years of ADNI2 from our analysis. 
As, after running a sample size analysis using the software 
G*Power (critical z = − 1.96 and actual power = 0.953), we 
concluded that the fifth year did not have enough partici-
pants to warrant analysis (Faul et al. 2007, 2009).

Episodic memory variables

All variables were obtained from the ADNIMERGE.csv 
dataset, which incorporates the most common measures 
of AD across all ADNI participants and cohorts. From the 
ADNIMERGE dataset, we selected the LMT, RAVLT, Alz-
heimer’s Disease Assessment Scale (ADAS-cog), and the 
ADNI composite memory score (ADNIMEM) as measures 
of episodic memory. We chose the LMT and RAVLT as 
they are specific tests that are widely used to measure epi-
sodic memory (Alzheimer’s Disease Neuroimaging Initiative 
2016, p. 21). The LMT is a subtest of the Weschler Memory 
Scale, which assesses episodic-memory formulation and rec-
ollection using a short story (Abikoff et al. 1987). In con-
trast, the RAVLT assesses episodic memory using a list-
learning strategy that measures delayed word recall (Vakil 
and Blachstein 1993). We also chose the ADAS-cog which 
is a general multi-domain test with an episodic-memory 
component (the ADASQ4) (Gomar et al. 2011; Crane et al. 
2012). Finally, we included the ADNIMEM measure as stud-
ies have suggested that a combined total episodic-memory 
score from all the tests above can strongly predict AD (Seo 
et al. 2016). ADNI calculates ADNIMEM using specific 
items from the RAVLT, ADAS-cog, LMT and MMSE.

It should be noted that the ADNIMERGE dataset reports 
multiple measures for some of the tests used. Specifically, 
the RAVLT contains measures of forgetting, immediate 
recall, learning, and percent forgetting (the percentage of 
words forgotten). Conversely, the ADAS-cog contains vari-
ables that represent different tests. The ADAS13 is the thir-
teen-question version of the ADAS-cog, the ADAS11 is the 
eleven-question variant of the ADAS-cog, and the ADASQ4 
is the episodic memory (delayed word recall) portion of the 
ADAS-cog. The remaining LMT and ADNIMEM tests 
were only reported as single measures. This is appropriate 
as ADNIMEM is only a total score and because one portion 
of the LMT was used for diagnoses. Specifically, the LMT 
can be split into two immediate recall and delayed recall 
measures. Our study only used the LMT immediate recall 
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measure because the delayed recall measure was used by 
ADNI to diagnose MCI and AD. For more information on 
the cognitive measures used by ADNI see the ADNI2 Proce-
dures Manual (Alzheimer’s Disease Neuroimaging Initiative 
2008, p. 119).

Neuroimaging variables

Our neuroimaging data was also acquired from the ADNI-
MERGE dataset which contains volumetric magnetic res-
onance imaging (MRI) measures for most ADNI partici-
pants. The University of California San Francisco (UCSF) 
processes and analyses all the neuroimaging data used in 
this study as part of a partnership with ADNI. Specifically, 
the UCSF use FreeSurfer software to clean and analyse 
raw MRI data, visually reconstruct the cortex, and segment 
brain regions into volumes for analysis. For more informa-
tion about FreeSurfer, see the Athinoula (2019) the Athi-
noula Martinos Center for Biomedical Imaging (2019), 
and for more information about UCSF methods, see the 
Alzheimer’s Disease Neuroimaging Initiative (2017). The 
volumetric neuroimaging variables contained in the ADNI-
MERGE dataset were determined via ADNI according to 
the literature. The specific variables we obtained from the 
ADNIMERGE dataset were MRI ventricle, hippocampal, 
whole brain, entorhinal, fusiform, and medial temporal lobe 
volume.

Missing data

The ADNIMERGE dataset contained missing data that com-
plicated our analysis. Accordingly, we ran a missing values 
pattern analysis to visualise the data and inform the best 
way to deal with the missing values. Usually, a study would 
omit missing values if under five per cent; however, this 
was not a comprehensive solution. In our dataset, all the 
episodic-memory measures only had approximately 2% of 
their data missing, meaning that we could omit the miss-
ing data. However, there was a severe amount of missing 
neuroimaging data in years three and four of ADNI2 that 
could not be omitted. To be precise, an average of 85% of 
all neuroimaging data was missing from these two years. 
Comparatively, an average of 20% of participants’ neuroim-
aging data was missing in years one and two of the ADNI2 
cohort. The missing data was so large for the latter two years 
of ADNI2 that there was no option but to remove the neu-
roimaging data for those years and to study neuroimaging 
markers only in the first two years of the ADNI2 cohort. The 
remaining 20% of missing data in the first two years was 
fixed using multiple imputations. Using SPSS 26, multiple 
imputations were formulated using the Mersenne Twister 
random number generator and the monotonic method set to 

six imputations. We followed the guidelines and methodol-
ogy for running multiple imputations suggested by Sterne 
et al. (2009) and Manly and Wells (2015).

Statistical analysis

Our analysis individually assessed the first four years of 
ADNI2. We thought that it was safest to compare measures 
within years rather than across the whole initiative because 
of the problems with missing data and participant dropout. 
Moreover, we wanted to observe the predictive ability of 
each episodic-memory measure during different stages 
of disease progression. Within each year, we individually 
assessed all three research questions derived from the aims 
specified in the introduction. Specifically, our research ques-
tions are as follows: (1) Can episodic-memory measures 
predict MCI to AD conversion, (2) Can mixed-predictor 
models outperform individual episodic-memory tests, and 
(3) Can neuroimaging measures outperform or improve 
episodic-memory and mixed-predictor models of MCI to 
AD conversion?

For the first research question, we tested which episodic-
memory measures (RAVLT, ADNIMEM, LMT, ADAS-cog) 
could best predict MCI to AD conversion. Specifically, we 
used a binary logistic regression to compare the predictive 
accuracy of each episodic-memory measures against the 
observed conversion in the ADNI database. For the second 
research question, we constructed mixed-predictor models 
using our episodic-memory measures. Specifically, we used 
a block-wise hierarchical binary logistic regression to create 
mixed-predictor models of MCI to AD conversion. We used 
a forced entry hierarchical method to input our data into the 
model because alternative methods (stepwise data entry) are 
open to suppression effects that bias variables. Accordingly, 
we entered variables in the order of the ADNIMEM, LMT, 
RAVLT, and ADAS-cog. The best predictive model must 
have contained the largest accounted variance, highest accu-
racy, only significant predictors, and could not violate the 
assumptions of a logistic regression. For the third research 
question, we determined the predictive ability of neuroim-
aging measures and then created a mixed-predictor model 
(using both episodic memory and neuroimaging variables). 
For this analysis, we used the same logistic regression meth-
ods as noted above. In the mixed-predictor models, variables 
were entered in order of their individual predictive accuracy.

Results

Descriptive statistics

Before the primary analysis, we ran descriptive statistics and 
frequency analyses to understand our population. Table 1 
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below summarises the baseline age, education, gender, 
MMSE, and CDR statistics of all participants. Both the 
conversion and non-conversion groups contained similar 
means and standard deviations with some variation in CDR 
scores and group sizes. At baseline, our participants had 
an approximate mean age of 71 and a standard deviation of 
seven years. Both groups had the same educational values 
with a mean education of 16 years and a standard deviation 
of 2.6 years. These education levels are considered high and 
may affect the generalisability of the results.

We also plotted participant diagnosis across the four years 
of ADNI2 (see Fig. 1 below). Approximately 20–25% of 
our participants converted from MCI to AD. This conver-
sion coincides with the MCI to AD conversion rate observed 
across the literature (Mitchell and Shiri-Feshki 2009). Fewer 
participants converted to AD in the first year of ADNI2 
(12%), which is to be expected, as AD progression is expo-
nentially related to age. However, it should be noted that the 
conversion rate increased above expectations in year four. It 
is unknown whether the observed increase in conversions is 
due to disease progression or participant dropout. Overall, 
21% of our participants converted from MCI to AD and 79% 
remained stable with MCI.

Episodic memory predictors of MCI to AD conversion

ADNI2 year one

In this section, we examined the ability of episodic-memory 
measures to predict MCI to AD conversion. Specifically, we 
used binary logistic regressions to understand the predictive 
odds and accuracy of each episodic-memory measure. Fol-
lowing the assessment of individual measures, we combined 
the episodic-memory variables using a hierarchical binary 
logistic regression to form a mixed predictive model of MCI 
to AD conversion for comparison.

In the first year of ADNI2, all the episodic-memory 
variables could significantly predict MCI to AD conversion 
except for the RAVLT Forgetting. The predictive odds, sig-
nificance and confidence intervals of each episodic-memory 
measure are detailed in Table 2 below. It is important to 
note that the results for the LMT, ADASQ4, RAVLT For-
getting and RAVLT Percent Forgetting could not be inter-
preted because they all violated the assumptions of a binary 
logistic regression (linearity of the logit). Out of the inter-
pretable results, the ADNIMEM composite memory score 
had the best accuracy and accounted variance when predict-
ing MCI to AD conversion [C&S R2 = 0.286, Nagelkerke 
R2 = 0.402, Conv-Acc. = 56.4%, p < 0.001]. The next best 
predictors of MCI to AD conversion were the ADAS13 
[Conv-Acc. = 50.2%], ADAS11 [Conv-Acc. = 42.6%], and 
RAVLT Immediate [Conv-Acc. = 41.4%].

Table 1  Participant descriptive 
statistics at baseline

Diagnosis Age Gender (F/M) Education MMSE CDR

MCI converter 71.2 (± 7.3) 98/125 16 (± 2.67) 28 (± 1.65) 1.3 (± 0.75)
MCI non-converter 72.4 (± 7.3) 44/50 16 (± 2.59) 27 (± 1.77) 2.2 (± 1.00)

Fig. 1  Participant diagnosis 
across ADNI2
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In year one, the best mixed episodic-memory predictor 
model consisted of the ADASQ4 and RAVLT Immediate 
(see Table 3 below). However, the mixed episodic-mem-
ory model [C&S R2 = 0.266, N-R2 = 0.374, Conv. Accu-
racy = 53.1%, p < 0.001] predicted MCI to AD conversion 
worse than the ADANIMEM model (but only marginally 
worse).

ADNI2 year two

In the second year of ADNI2, all episodic-memory 
measures could predict MCI to AD conversion besides 
the RAVLT Forgetting. Overall, episodic-memory 
measures performed better in the second year than they 
did in the first year. However, the LMT violated the 

assumption of linearity of the logit and could not be inter-
preted (see Table 2). The best predictors of conversion 
were the RAVLT Percent Forgetting [C&S R2 = 0.213, 
N-R2 = 0.297, Conv-Acc. = 71.7%, p < 0.001], ADAS 13 
[Conv-Acc. = 69.8%], ADASQ4 [Conv-Acc. = 66.3%], and 
ADNIMEM [Conv-Acc. = 63.9%].

When constructing a mixed model, no significant model 
could be found that matched or outperformed our RAVLT 
Percent Forgetting or ADAS13 models. This was, in part, 
due to high amounts of multicollinearity between variables. 
It is unclear why multicollinearity was such a large issue in 
the second year and not in the first year of ADNI2. Conse-
quently, the RAVLT Percent Forgetting remained the best 
episodic-memory predictor of MCI to AD conversion in the 
second year of ADNI2.

Table 2  Episodic memory predictors of MCI to AD conversion in year one and two of ADNI2

Italic variables violated assumption checks and could not be interpreted
B  regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, C&S R2 Cox & Snell R-squared, N-R2 nagelkerke R-squared, 
Conv acc. conversion accuracy, S.E. standard error, Model acc. model accuracy

ADNI year EM measures B S.E. Wald Sig. Exp (B) C&S R2 N R2 Conv acc. Model acc.

1 ADNI_MEM − 1.950 0.096 412.857  < 0.001 0.142 0.286 0.402 56.4 78.1
RAVLT forgetting 0.058 0.019 9.308 0.002 1.059 0.004 0.006 0.0 68.8
RAVLT immediate − 0.122 0.007 331.591  < 0.001 0.885 0.227 0.319 41.4 72.4
Logical memory test − 0.310 0.015 433.988  < 0.001 0.733 0.269 0.378 60.6 77.7
RAVLT percent forgetting 0.030 0.002 267.456  < 0.001 1.031 0.154 0.217 63.8 71.7
RAVLT learning − 0.371 0.023 256.490  < 0.001 0.690 0.142 0.200 38.1 75.0
ADAS 13 0.177 0.009 423.350  < 0.001 1.193 0.274 0.385 50.2 77.5
ADAS Q4 0.450 0.023 386.623  < 0.001 1.569 0.226 0.318 53.2 75.7
ADAS 11 0.237 0.012 382.434  < 0.001 1.267 0.247 0.348 42.6 77.4

2 ADNI_MEM − 2.240 0.112 402.790  < 0.001 0.106 0.358 0.501 63.9 81.6
RAVLT forgetting 0.100 0.019 27.591  < 0.001 1.105 0.016 0.022 0.0 66.9
RAVLT immediate − 0.124 0.007 313.531  < 0.001 0.883 0.255 0.356 51.8 76.4
Logical memory test − 0.396 0.018 460.720  < 0.001 0.673 0.382 0.533 70.7 81.1
RAVLT percent forgetting 0.039 0.002 277.774  < 0.001 1.039 0.213 0.297 71.7 75.6
RAVLT learning − 0.362 0.025 208.274  < 0.001 0.696 0.139 0.194 34.9 71.1
ADAS 13 0.207 0.010 436.523  < 0.001 1.230 0.386 0.539 69.8 84.3
ADAS Q4 0.564 0.027 431.223  < 0.001 1.758 0.324 0.452 66.3 82.0
ADAS 11 0.290 0.014 404.279  < 0.001 1.337 0.366 0.511 60.2 82.4

Table 3  The best mixed episodic-memory model in year one of ADNI2

B regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, S.E. standard error, C&S R2 Cox & Snell R-squared, N-R2 Nagel-
kerke R-squared, Conv acc.  conversion accuracy, Model acc. model accuracy

Model C&S R2 N-R2 Sig. Conv acc. Model acc.

Mixed EM Model Y1 0.266 0.374  < 0.001 53.1 77.1

Components B S.E. Wald Sig. Exp(B)

RAVLT immediate − 0.078 0.008 98.489  < 0.001 0.925
ADAS Q4 0.281 0.028 101.285  < 0.001 1.324
Constant 0.011 0.363 0.001 0.976 1.011
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ADNI2 year three

In the third year of ADNI2, the predictive accuracy of the 
episodic-memory measures continued to improve (see the 
conversion accuracy in Table 4 below). Unlike prior years, 
all measures met the assumptions of the linearity of the 
logit and could, therefore, be interpreted. Once again, all 
episodic-memory measures were significant besides the 
RAVLT forgetting variable. The LMT [C&S R2 = 0.374, 
N-R2 = 0.521, Conv-Acc. = 76.9%, p < 0.001] was the 
single best predictor followed by the ADASQ4 [Conv-
Acc. = 71.6%], ADNIMEM [Conv-Acc. = 67.6%], and the 
ADAS13 [Conv-Acc. = 67.3%].

In the third year of ADNI2, the best mixed episodic-
memory predictive model of MCI to AD conversion con-
tained the LMT, ADNIMEM, and ADASQ4 measures (see 
Table 5 below). The mixed episodic-memory model [Conv-
Acc. = 77.7%, p < 0.001] performed marginally better than 
the LMT model. However, it could be argued that the dispar-
ity in accuracy between the mixed model and LMT is not 
large enough to justify using three measures (including the 
LMT) compared to just using the LMT. Nonetheless, year 
three provided strong evidence for the viability of mixed 
predictive models.

Table 4  Episodic memory predictors of MCI to AD conversion in year three and four of ADNI2

B regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, C&S R2 Cox & Snell R-squared, N-R2 Nagelkerke R-squared, 
Conv acc. conversion accuracy, S.E. standard error, Model acc. model accuracy

ADNI year EM measures B S.E. Wald Sig. Exp(B) C&S R2 N R2 Conv acc. Model acc.

3 ADNI_MEM − 2.445 0.134 333.229  < 0.001 0.087 0.409 0.571 67.6 83.2
RAVLT forgetting 0.025 0.023 1.248 0.264 1.026 0.001 0.001 0.0 67.4
RAVLT immediate −0.151 0.009 283.746  < 0.001 0.860 0.321 0.447 55.6 76.9
Logical memory test − 0.367 0.019 358.583  < 0.001 0.693 0.374 0.521 76.9 82.9
RAVLT percent forgetting 0.044 0.003 262.105  < 0.001 1.045 0.248 0.346 67.1 75.3
RAVLT learning − 0.405 0.027 228.073  < 0.001 0.667 0.200 0.279 51.2 74.0
ADAS 13 0.233 0.012 351.517  < 0.001 1.262 0.453 0.631 67.3 85.5
ADAS Q4 0.608 0.031 383.384  < 0.001 1.837 0.364 0.508 71.6 82.1
ADAS 11 0.311 0.017 340.292  < 0.001 1.365 0.425 0.593 65.8 84.5

4 ADNI_MEM − 2.284 0.149 233.721  < 0.001 0.102 0.400 0.563 71.1 85.6
RAVLT forgetting 0.018 0.029 0.372 0.542 1.018 0.000 0.001 0.0 69.4
RAVLT immediate − 0.142 0.010 199.219  < 0.001 0.868 0.301 0.425 57.1 78.6
Logical memory test − 0.311 0.021 220.538  < 0.001 0.733 0.327 0.461 77.2 84.1
RAVLT percent forgetting 0.037 0.003 148.148  < 0.001 1.037 0.191 0.270 65.3 72.2
RAVLT learning − 0.402 0.037 121.157  < 0.001 0.669 0.144 0.204 40.1 74.1
ADAS 13 0.198 0.012 252.225  < 0.001 1.219 0.431 0.608 75.5 88.3
ADAS Q4 0.637 0.039 266.060  < 0.001 1.891 0.363 0.513 75.0 85.5
ADAS 11 0.262 0.017 238.778  < 0.001 1.299 0.406 0.573 73.2 87.6

Table 5  The best mixed episodic-memory model in year three of ADNI2

B regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, S.E. standard error, C&S R2 cox & Snell R-squared, N-R2 Nagel-
kerke R-squared, Conv acc. conversion accuracy, Model acc. model accuracy

EM measures C&S R2 N-R2 Sig. Conv acc. Model acc.

Mixed EM Model Y3 0.428 0.598  < 0.001 77.7 85.1

Components B S.E. Wald Sig. Exp(B)

ADNI_MEM − 1.250 0.219 32.535  < 0.001 0.287
Logical memory − 0.157 0.024 41.174  < 0.001 0.855
ADAS Q4 0.136 0.053 6.644 0.010 1.145
Constant − 1.007 0.364 7.652 0.006 0.365
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ADNI2 year four

In the fourth and final year of ADNI2, our analysis con-
firmed the trend that the accuracy of episodic-memory 
measures improves over time. As observed in prior years, 
RAVLT Forgetting could not predict MCI to AD conver-
sion and was not significant. The best episodic-memory 
predictor was the LMT which predicted MCI to AD conver-
sion with an accuracy of 77.2% (see Table 4 above). The 
LMT was followed by the ADAS13 [Conv-Acc. = 75.5%] 
and the ADASQ4 [Conv-Acc. = 75.0%] in predictive abil-
ity. The LMT did not have the best accounted variance 
[C&S R2 = 0.327, N-R2 = 0.461] and was greatly surpassed 
by the ADAS13 [C&S R2 = 0.431, N-R2 = 0.608] and the 
ADASQ4 [C&S R2 = 0.363, N-R2 = 0.513]. Accordingly, 
the LMT, the ADASQ4 or the ADAS13 could be consid-
ered the best predictive measures of MCI to AD conversion 
depending on research preferences. Note that we attempted 
to formulate a mixed episodic-memory predictor model in 
the fourth year of ADNI2; however, as with the second year, 
no model was found that could match or surpass our indi-
vidual episodic-memory measures and meet the assumption 
of multicollinearity.

Neuroimaging and mixed‑predictor models of MCI 
to AD conversion

After we determined the best episodic-memory predictors of 
MCI to AD conversion, we compared them to neuroimaging 
measures to find the best measure of early-stage AD. Specifi-
cally, we assessed the predictive ability of each neuroimag-
ing variable using a binary logistic regression. Following the 
individual analysis, we used a hierarchical binary logistic 

regression to determine whether a combined neuroimaging 
and episode memory predictive model could outperform 
prior models. It is important to note that the third and fourth 
years of ADNI2 neuroimaging data could not be assessed 
due to problems with missing data that are discussed in the 
Methods section (p.6).

In the first year of ADNI2, the neuroimaging markers 
were tested for their predictive odds and accuracy. All vari-
ables were statistically significant yet had problematic odds 
ratios [approximately Exp(B) = 1.00]. This meant that we 
could not interpret the odds ratios. All the neuroimaging 
variables performed very poorly when predicting MCI to 
AD conversion, as can be seen in Table 6 below. The best 
predictor of conversion was the entorhinal variable [Conv-
Acc. = 27.85%], followed by hippocampal volume [Conv-
Acc. = 27.32%]. All models performed worse than chance 
when predicting MCI to AD conversion. Moreover, neu-
roimaging variables also performed worse than episodic-
memory measures in the first year of ADNI2.

In the first year of ADNI2, the best mixed neuroimag-
ing and episodic-memory model contained the ADAS11, 
the LMT and MRI entorhinal variables. The mixed model 
predicted MCI to AD conversion with a higher accuracy 
than both the individual and composite episodic-memory 
measures (see Table 7 below). Specifically, the mixed model 
predicted disease conversion with an accuracy of 59.8% 
compared to the 56.4% conversion accuracy of the ADNI-
MEM model.

In the second year of ADNI2, all our variables gener-
ally improved in predictive ability compared to the first 
year; however, the odds ratios were still problematic. Spe-
cifically, almost all variables have a positive odds ratio 
of Exp(B) = 1.00 and could not be interpreted; however, 

Table 6  MRI predictors of MCI to AD conversion in year one and two of ADNI2

B regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, C&S R2 Cox & Snell R-squared, N-R2 Nagelkerke R-squared, 
Conv acc. conversion accuracy, S.E. standard error, Model acc. model accuracy

ADNI year MRI measures B S.E. Wald Sig. Exp(B) C&S R2 N R2 Conv acc. Model acc.

1 UCSF ventricles 0.000 0.000 5.736 0.038 1.000 0.020 0.027 1.95 68.15
UCSF hippocampus −0.001 0.000 30.879  < 0.001 0.999 0.115 0.161 27.32 71.58
UCSF whole brain 0.000 0.000 6.733 0.025 1.000 0.023 0.032 1.07 68.85
UCSF entorhinal − 0.001 0.000 32.048  < 0.001 0.999 0.120 0.169 27.85 71.26
UCSF fusiform 0.000 0.000 15.833 0.001 1.000 0.057 0.081 8.17 69.17
UCSF med temp 0.000 0.000 19.031 0.001 1.000 0.067 0.095 14.17 69.55

2 UCSF ventricles 0.000 0.000 6.912 0.022 1.000 0.027 0.038 4.4 67.97
UCSF hippocampus − 0.001 0.000 37.006  < 0.001 0.999 0.169 0.235 42.4 75.08
UCSF whole brain 0.000 0.000 7.680 0.016 1.000 0.031 0.044 4.2 68.17
UCSF entorhinal − 0.001 0.000 38.019  < 0.001 0.999 0.174 0.243 43.4 75.17
UCSF fusiform 0.000 0.000 17.822 0.002 1.000 0.077 0.107 19.68 71.07
UCSF med temp 0.000 0.000 22.626  < 0.001 1.000 0.097 0.135 30.3 73.27
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the Wald statistics could still be used to indicate predic-
tive odds. We theorised that the problematic odds ratios 
occurred due to the multiple imputations, however, this 
interaction is beyond the scope of this study. The average 
accounted variance and predictive accuracy of the neuro-
imaging variables in the second year of ADNI2 was gener-
ally worse than the episodic-memory measures in the same 
year. The entorhinal [Conv-Acc. = 49.1%], hippocampal 
[Conv-Acc. = 47.4%] and MTL [Conv-Acc. = 30.3%] mod-
els had the best accuracy when predicting MCI to AD 
conversion (see Table 6 above). All remaining variables 
performed poorly in comparison when predicting disease 
conversion.

In year two of ADNI2, the best mixed model contained 
the ADAS13 and MRI entorhinal variables. The accuracy 
and accounted variance of the mixed-predictor model 

performed slightly worse than the episodic-memory mod-
els observed in the second year of ADNI2 (see Tables 7 
above). However, the model performed worse by a negligi-
ble amount. Accordingly, the best predictor of MCI to AD 
conversion in the second year of ADNI 2 was the RAVLT 
Percent Forgetting episodic-memory measure.

When assessing individual predictors of MCI to AD con-
version, we found that individual episodic-memory meas-
ures were the best predictors of MCI to AD conversion 
(see Fig. 2 above). Comparatively, individual neuroimag-
ing markers could not predict MCI to AD conversion above 
chance averages. When assessing mixed-predictor models 
(both episodic memory and neuroimaging), we found that 
all models could predict MCI to AD conversion similarly to 
individual episodic-memory tests. Specifically, each mixed 
model varied approximately ± 2.2% in accuracy from the 

Table 7  The best mixed MRI and episodic-memory models in years one and two of ADNI2

B regression coefficient used to calculate Exp(B), Exp(B) predictive odds ratio, S.E. standard error, C&S R2 Cox & Snell R-squared, N-R2 nagel-
kerke R-squared, Conv acc. conversion accuracy, Model Acc. model accuracy

Mixed Models C&S R2 N-R2 Sig. Conv acc. Model acc.

Mixed MRI + EM Model Y1 0.323 0.454  < 0.001 59.8 80.4
Mixed MRI + EM Model Y2 0.408 0.570  < 0.001 70.5 83.9

Model Components B S.E. Sig. Exp(B)

Mixed MRI + EM Model Y1 ADAS 11 0.130 0.037  < 0.001 1.139
Logical memory test − 0.190 0.046  < 0.001 0.827
UCSF entorhinal 0.000 0.000 0.044 1.000
Constant 0.528 0.978 0.590 1.695

Mixed MRI + EM Model Y2 ADAS 13 0.188 0.027  < 0.001 1.207
UCSF entorhinal − 0.001 0.000 0.018 0.999
Constant − 1.930 1.176 0.103 0.145

Fig. 2  The accuracy of all 
models over ADNI2. The dotted 
lines indicate that no mixed 
episodic memory (EM) models 
were created in years two and 
four of ADNI2
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best episodic-memory measure each year. Accordingly, in 
some circumstances, mixed models may be a viable alter-
native to episodic-memory tests; however, when factoring 
in the logistical complexity of multiple measures, episodic-
memory tests remain the most reliable and clinically viable 
option.

Discussion

In this study, we investigated the ability of several episodic-
memory measures to predict early-stage AD. Specifically, 
we used episodic-memory tests to predict MCI to AD con-
version, and thus detect markers of early-stage AD. While 
other studies have examined episodic memory as a predictor 
of MCI to AD conversion, this is the first study that assesses 
all ADNI episodic-memory measures in depth and compares 
them to common neuroimaging predictors of AD. For exam-
ple, we evaluated episodic-memory measures individually 
and in mixed models. The following section discusses our 
results and the implications of our findings.

In research question one, we evaluate the ability of indi-
vidual episodic-memory tests to predict MCI to AD conver-
sion. We found that, across the first four years of ADNI2, 
all episodic-memory tests could predict disease conversion, 
apart from the RAVLT Forgetting (which was consistently 
not significant). Specifically, the following individual epi-
sodic-memory measures were the best predictors of MCI 
to AD conversion: ANIMEM in the first year (56.4%), the 
RAVLT Percent Forgetting in the second year (71.7%) and 
the LMT in the third (76.9%) and fourth years (77.2%). 
Across the whole of ADNI2, the LMT, the ADASQ4, the 
ADAS13, ADNIMEM and the RAVLT Percent Forgetting 
were consistently strong predictors of disease conversion. 
We also found that over the years, all episodic-memory tests 
improved in predictive accuracy. When assessing the best 
type of cognitive test to use, we found that specific episodic-
memory measures, general multi-domain tests, and com-
posite memory tests performed similarly. However, specific 
episodic-memory measures were commonly the best indi-
vidual predictors of MCI to AD conversion as we theorised. 
We were surprised to find that some forms of general multi-
domain tests could strongly predict MCI to AD conversion. 
Namely, the ADAS13 but not the ADAS11 had a good pre-
dictive ability. We theorise that the better performance of 
the ADAS13 is due to the inclusion of the episodic-memory 
component (ADASQ4).

In research question two, we assessed the predictive 
ability of mixed episodic-memory predictor models. We 
found that all mixed models performed similarly or mar-
ginally worse than individual predictor tests. Specifically, 
the mixed episodic-memory models had an accuracy of 
53.1% in year one and 77.7% in year three. In comparison, 

the best individual episodic-memory models had an accu-
racy of 56.4% in year one and 76.9% in year three. These 
results align with De Simone et al. (2019), who found that 
individual and mixed episodic-memory models are both 
equally viable and tend to have similar accuracies. How-
ever, we found that even when mixed models outperformed 
individual measures, the difference was so negligible that 
it did not make logistical sense to use multiple tests over 
a single measure. Moreover, we found that in some years 
of ADNI2, mixed-predictor models were incredibly hard 
to compute and often violated the assumption of multicol-
linearity. Accordingly, our results indicated that individual 
episodic-memory tests were the most versatile measures of 
early-stage AD.

In research question three, we compared our episodic-
memory measures to neuroimaging markers commonly used 
in the literature. In the first and second years of ADNI2, 
neuroimaging markers poorly predicted MCI to AD conver-
sion in comparison to episodic-memory measures. In the 
first year, the best predictors of conversion were MRI vol-
ume measures of participants’ entorhinal (27.9%) and hip-
pocampal (27.3%) regions. Similarly, in the second year, the 
entorhinal (43.4%) and hippocampal (42.4%) regions were 
the best neuroimaging predictors of MCI to AD conversion; 
however, these statistics were in no way good individual 
predictors of MCI to AD conversion. While we found that 
the entorhinal and hippocampal regions of the brain were 
the best neuroimaging predictors of disease conversion in 
concordance with the literature; our accuracy statistics were 
significantly weaker than those observed in other studies 
(Moradi et al. 2017; Ihara et al. 2018). Other studies using 
the ADNI2 cohort have found that MRI volumetric measures 
can predict MCI to AD conversion with an accuracy ranging 
from 60 to 85% depending on the specific measure (Korolev 
et al. 2016; Sun et al. 2017). We theorise that our results are 
weaker than previous research because we were restricted to 
only studying two years of ADNI2 and because neuroimag-
ing measures improve with disease progression. However, 
it is important to note that many neuroimaging studies com-
bine measures to create mixed models with higher accuracy. 
If we combined different neuroimaging measures (e.g., PET) 
to create a mixed-predictor model, maybe we could have 
observed similar results to the models in the literature. How-
ever, the refinement of neuroimaging models was beyond the 
scope of this paper.

When assessing mixed variable models, we found that 
neuroimaging markers predicted MCI to AD conversion 
better when they were combined with episodic-memory 
markers. Moreover, in both the first and second years of 
ADNI2, combined neuroimaging and episodic-memory 
mixed models predicted MCI to AD conversion the same 
as or better than all other models. In the first year, the 
ADAS11, LMT and UCSF entorhinal measures predicted 
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disease conversion with an accuracy of 59.8%. In the 
second year, the ADAS13 and UCSF entorhinal meas-
ures predicted MCI to AD conversion with an accuracy 
of 70.5%. In comparison, our other models achieved an 
accuracy of 56.4% (ADNIMEM) in year one and 71.7% 
(RAVLT percent forgetting) in year two. However, like 
the mixed episodic-memory models, these mixed models 
did not provide any significant increases in accuracy that 
would justify the use of multiple measures over one single 
episodic-memory test. These results are similar to those 
obtained by Gomar et al. (2014), who found that adding 
neuroimaging measures to episodic-memory tests did not 
significantly improve predictive models.

In summary, our study determined that, out of several 
variables, individual episodic-memory measures such 
as the LMT are strong predictors of MCI to AD conver-
sion and therefore of early-stage AD. While neuroimag-
ing measures and mixed models can increase the overall 
accuracy of predictive models by a small amount, there is 
no significant advantage when factoring in the logistical 
complexity and cost of the technology. When research-
ing episodic memory in AD and MCI conversion, we rec-
ommend the use of the RAVLT Percent Forgetting, the 
ADASQ4 and the LMT for episodic-memory testing. Evi-
dence also suggests that general multi-domain tests should 
be added to inform diagnoses later during AD progres-
sion (e.g., ADAS13). However, it is important to note that 
researchers and clinicians need to be careful when using 
single episodic-memory measures, as they sometimes do 
not match the target population and perform differently at 
various stages of AD progression (e.g., tests performed 
with varying accuracies across ADNI2 in our study). In 
turn, it is imperative that multiple episodic-memory tests 
be repeatedly and consistently administered throughout 
disease progression to confirm MCI and AD diagnoses.

It is important to note that this study had some limita-
tions that should be considered. Namely, we had problems 
with missing data and a restricted methodology. Research-
ers should be aware of our limited neuroimaging data, high 
participant education, and problems with multicollinear-
ity (in mixed models) when generalising our results. It is 
also apparent that our methodology could have been more 
robust. For example, while splitting the ADNI years was 
beneficial for observing MCI progression and test char-
acteristics, we fear that it may have overcomplicated the 
results. Our logistic regression also limited our ability to 
have a control group. In turn, future studies should use a 
survival analysis to include a control group and mediate 
for participant characteristics (e.g., Aβ, neuropsychiatric 
symptoms, APOE4). Future research should also seek to 
investigate the predictive ability of other episodic-memory 
tests. In turn, we hope that future research can overcome 
our limitations and continue to apply episodic-memory 

tests to early-stage AD research. We believe that, with fur-
ther research, episodic-memory tests can be used to help 
diagnose early-stage AD and enable sufficient treatment 
for individuals with AD.
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